
A compact functional verification flow for a
RISC-V 32I based core

Roberto Molina-Robles∗, Edgar Solera-Bolanos∗, Ronny Garcı́a-Ramı́rez∗,
Alfonso Chacón-Rodrı́guez∗, Alfredo Arnaud† and Renato Rimolo-Donadio∗

∗Escuela de Ingenierı́a Electrónica, Tecnológico de Costa Rica
†Depto. de Ingenieria Electrica, Universidad Catolica del Uruguay

{rmolina, esolera ,rgarcia, alchacon, rrimolo}@tec.ac.cr
aarnaud,@ucu.edu.uy

Abstract—The structure of a functional verification flow used
for the design of a RISC-V core is presented. The paper
offers a guide on the test-planning used and details of the flow
architecture, showing how to integrate the Universal Verification
Methodology with the required, reference models, while imple-
menting key futures in standard verification environments, such
as testing regressions and code and structural coverage. The
designed flow is compact yet efficient, making it affordable for
small design teams, without requiring extra investment other
than the already necessary licenses for RTL synthesis and the
eventual fabrication of the chip.

Index Terms—Functional Verification, RISC-V 32I, UVM, Sys-
temVerilog, EDA tools, architecture, test generation, processor,
compiler, simulation, coverage, regression, reference model.

I. INTRODUCTION

Functional verification is hardly a new topic. There is a
solid standard [1], and plenty of teaching resources available
(see for instance [2] for a comprehensive site with plenty
of free resources). And there exists some recent literature
with examples that can provide guidance to non-experienced
verification teams. Some works, for instance, show how to im-
plement verification environments with or without UVM, such
as [3], where a custom environment was proposed to improve
coverage, or [4] and [5], where UVM was applied to different
RTL blocks. Yet, most of the documentation available points
towards the use of massive, highly integrated frameworks
attached to a particular methodology—typically derived from
the Universal Verification Methodology (UVM)—, where the
access to commercial tools and personnel is not a limitation,
and the departure specifications for the expected results are
readily defined (or at least, do not depend directly on the
verification team itself). Yet, small design teams usually do
not have the budget to tackle the verification problem using
such an approach, particularly when the design and verification
process must be handled by the same people. This means
finding ways to optimize hardware and software resources,
through the use of open source tools whenever possible,
while providing with a flexible environment that can easily
be migrated from a project to another. Now, some examples
of small teams using functional verification for their chips
approach can be found. Yet, to our knowledge, most of the goal
specifications in those papers were already defined by the use

of a standard given architecture (SiFive’s Rocket-chip), written
in Chisel. This was not the case here, being Siwa an archi-
tecture written from scratch, with several modifications from
the RISC-V 32I standard mandated by the ultra low power
specifications of its intended application. This paper’s main
purpose is to document the implementation of a functional
verification environment used for the pre-silicon verification
of a RISC-V 32I based processor, called Siwa, developed
by a small team of only six people as the main controller
core of a medical implantable tissue stimulator (see [6] for
details on the processor and the medical device system itself).
The present work gathers strategies as those used in the
previous references, and incorporates them not only for the
verification of architectural blocks, but also, adds up the use of
reference models, the integration of custom architectures and
the automation of regressions for random verification, topics
often missing in the literature.

As such, the structure here presented allows for functional
verification at different hierarchical levels, using oriented and
random-constrained tests, based whether on custom reference
models or requiring the incorporation of code simulators
serving as golden vectors generators, while using regression
systems for extending code coverage. All these in an environ-
ment compact and versatile enough for a verification team of
only three people.

This paper is organized as follows: Section II describes the
tools and resources selected for this work. Section III details
the establishment of the verification plan. Section IV describes
the proposed verification flow. Section V presents the results.
Lastly, Section VI highlights the main conclusions of the work
and discusses some future work.

II. DEFINITION OF TOOLS AND RESOURCES

Small IC design teams with modest financial resources
typically require affordable yet competitive, low maintenance
tools. Yet, one cannot always resort to the open source
community for such tools, although there is a strong movement
pushing in that direction of open hardware design, as for
instance the Linux Foundation CHIPS Alliance. There is also
a lack of technology kits for open design tools, as foundries
base their production environments on the three major EDA978-1-7281-3146-7/20/$31.00 ©2020 IEEE

Authorized licensed use limited to: ANII. Downloaded on October 19,2021 at 19:30:40 UTC from IEEE Xplore. Restrictions apply.

providers: Mentor Graphics, Synopsys and Cadence. Particu-
larly, our group has a Synopsys license available. In the case
here presented, selecting SystemVerilog (SV) as specification
language, and UVM as the verification methodology was
straightforward. SystemC was discarded due to its lack of
support from the Synopsys synthesis tools and the libraries
flow provided by the foundry for the project, with the added
extra of SV already having a UVM library incorporated,
and being supported by most of compilers/simulators. This
meant using Synopsys VCS for the compilation, simulation
and coverage processes and Synopsys DVE as the Waveform
Viewer and Coverage Analyzer of choice. This mainly because
of the tools’ easy interfacing with the Design Compiler and
IC Compiler flows. Alternative simulators (such as Verilator)
and wave analysis tool (GTKwave), nonetheless may be used.

Concerning the setup of the regression platform, Linux’s
Cron utility and basic Bash scripting were selected, even
though there are other options such as Jenkins and Bamboo
that are typically more favored by industry because of their
wide array of features and support for large development
teams. Cron, nonetheless, is easier to setup and less demanding
in terms of computation resources.

III. FIRST STEPS: VERIFICATION FROM SCRATCH

Before addressing the verification architecture, a road-map
is first created. This means studying the design via speci-
fication documents and industry standards, and coordinating
with the core’s architects and designers. Having adequate
knowledge about the functionality of the chip to be verified
accelerates the verification process. Coding can be tackled
once the verification plan is ready. Methodology, verification
architecture, test plans, resources and tools, time-lined efforts,
coverage points and others aspects are expected sections of the
verification plan, and should be reviewed several times with
architects, designers and other verification engineers.

Regarding this work’s implementation, the environments
were custom built for a processor based on RISC-V 32I
standard [7], focused on medical applications [6], and most
of them developed under the UVM standard.

IV. THE VERIFICATION ARCHITECTURE

Since the processor was small, verification efforts were into
only two hierarchical levels. The lower level for block verifi-
cation and the higher level for chip verification. A simulation-
based verification flow must include several characteristics,
which can be found here [8].

A. Block-Level Verification

The selected blocks submitted for verification were: an
Arithmetic-Logic Unit (ALU), a Memory-Bus Controller
(MBC), a System Bus and a Universal Asynchronous
Receiver-Transmitter port (UART). The ALU and the UART
blocks were designed using a standard register-based RTL
approach, with minor custom modifications. The MBC and
the bus used a latch-based micro-architecture, for area and
power reduction. Either way, for block-level verification then,

UVM was used to implement the verification architectures.
The remaining block was an SPI module that was stimulated
at chip-level, however, its complete verification will be done
in further spins. A Black-Box philosophy was selected for
the block-level verification efforts. In [9], there is a clear
explanation of the advantages of this type of verification.
Figure 1 shows the generalized block diagram for the block-
level architecture, based on [1].

Figure 1. A testbench implemented using a UVM architecture for block-level
verification. The quantity of agents varies depending on the modularity of the
design block interfaces. The sequencer calls sequences built with sequence
items to form a test. The desired test is called from the command line.

There were small variations in the architecture’s implemen-
tation for each individual block, but the general idea remains
the same. For example, the TX Agent and RX Agent from
Fig. 1 were here fused into a single agent for the ALU and
the UART, since those blocks had few interfaces and their
functionality were simple enough. In contrast, the MBC and
the Bus had more than two agents because of their several
interfaces. This type of modifications are supported inside the
UVM standard, but one must remember that the less agents
one has, the easier its environment construction but the harder
its maintenance. The ALU and the UART are blocks with
standard interfacing, not prone to change in further micro-
architectures, and thus, agents may be considered stable as
well. Meanwhile, the MBC and Bus are blocks that may
change depending on features that might be added in further
spins. If one separates the interfaces in features/devices and
connect an individual agent to it, then one can only adjust the
associated agent instead of modifying a more complex agent
connected to all interfaces at once.

At the block-level, the reference model used was
transaction-based [9]. That is, that at every transaction between
the verification environment and the DUT, a checking is being
made between the custom reference model’s prediction and
the actual results of the DUT. This reference model was
implemented in SV inside the scoreboard, based on a written
specification to avoid similarities with the RTL implementation
as much as possible.

B. Chip-Level Verification

Chip-level verification means that the DUT is the complete
RISC-V core. Here, a first consideration is that the core runs
programs that cannot be totally randomized: for instance,
memory addressing instructions have limited valid ranges,
and certain registers have pre-defined functions. Second, the
core has concurrent interfaces (UART, SPI and GPIO). Third,

Authorized licensed use limited to: ANII. Downloaded on October 19,2021 at 19:30:40 UTC from IEEE Xplore. Restrictions apply.

the easiest way to debug a processor is looking into the
core’s register bank. However, none of these registers can
be externally accessed, except indirectly via the UART or
SPI ports. Finally, the moment when the checking with the
reference model occurs must be selected carefully according to
the micro-architecture; that is, that the time needed to execute
instructions varies depending on the core structure (simple
scalar multicycle, pipelined scalar, pipelined superscalar, etc.).

These restrictions imposed a Grey-Box approach as the
chip-level verification philosophy, where the register bank is
accessed via a backdoor. A “Golden Reference” methodology
was selected, as recommended by [9], although it is possible
to use a transaction-based reference model if the checking
occurs at the end of each instruction cycle. Test program
generation was handmade at this level. Figure 2 shows the
custom architecture of the chip-level verification environment.

Figure 2. Custom architecture implemented for pre-silicon testing of a RISC-
V core. The test generator calls a program created with the compiler and loads
it inside the DUT. The responser communicates with the DUT if it is instructed
in the program. Monitors are connected via backdoors to registers and specific
control signals. Blue blocks and the DUT were written in SystemVerilog.

A program is loaded and executed in Siwa’s RTL model.
Information from the data and control-status registers (CSRs)
information is stored in an array at the end of each instruction
cycle. Simultaneously, a reference model predicts the correct
result that ought to be stored in each register for every
instruction, and stores it as well in another array. The final
data arrays are compared after the testing program ends.

C. Generation of the Reference Model for Chip-Level Verifi-
cation

Contrary to the block-level reference models, custom built
using a specification document, a standardized reference model
was used for chip-level verification. In order to build such
custom reference model, the logic described in Fig. 3 is
followed. The RISC-V simulator RV8 [10] is used in tandem
with a custom reference model written in SV, validated itself
against RV8 simulation results. The goal was to construct a
model capable of predicting results stored into the register
bank for each instruction. The custom reference model is used
for Siwa’s custom operations that do not follow the RISC-V
standard; specifically: a smaller set of CSR and a restricted
memory map (8kB).

D. Test Generation

The test generation was handled differently depending on
the hierarchical level. All tests for block-level DUTs were
randomly generated and constrained. The verification plan

Figure 3. RISC-V reference model flow diagram. This model is called before
loading the Flash memory. The predictor also helps to determine when a test
should end, if the RTL does not reach this point, it means that something
went wrong. Each of these steps conforms a typical instruction cycle.

previously designed specifies the necessary tests. For instance,
a test for each arithmetic-logic functionality of ALU was
implemented, for each type of transactions through the UART
at different speeds and configurations. Read and write tests for
the MBC and tests that emulate data flow traffic through the
Bus were also created.

At chip-level, however, random instruction generation was
more complicated. Since instructions must follow the ISA
standard and the program needs a coherent intention to be
able to run an application, the tests were completely oriented,
hence, the random factor was taken out. Test selection comes
from the verification plan. This meant tests were implemented
for each instruction in the RISC-V 32I ISA [7], for each port
and its intended functionality, for each type of core interrupt,
and tests that increase coverage over the register bank and
memory space were also needed. Each of these tests were
written as individual programs to be loaded and run into
the core. These tests were handmade and developed using a
C Assembler compiler, from the Sifive Toolchain [11], [12].
Fig. 4 shows a diagram the tests order of execution, as they
feed the verification environment.

Figure 4. Diagram that depicts how tests are handled prior the beginning of
the simulation. Machine code marked with a * has been edited with a Python
script, in order to match the Flash memory model requirements.

The resulting text file with the program was modified
afterwards via script to adjust it, so the SV model of a Flash
memory could read it. Then, the core boots from that Flash
memory connected to a SPI (Serial Peripheral Interface) port.
Finally, the rest of the simulation and the checking occurs as
explained on the previous sections.

Authorized licensed use limited to: ANII. Downloaded on October 19,2021 at 19:30:40 UTC from IEEE Xplore. Restrictions apply.

E. Regression System

Regressions in functional verification are similar to test
farms, where multiple tests are run one after another. Some
are pseudo-random, and therefore, are linked to a seed. Others,
are oriented tests running a particular important feature. The
proposed flow integrated a regression platform, depicted in
Fig. 5.

Figure 5. General structure of the regression system. Each test is run
according to a list of tasks, with a configuration file defining specific aspects
of the regression, such as loop quantity and type of coverage collected.

Basic shell scripting was used for coding the regression
platform, following the general structure shown in Fig. 5.
Seeds are generation using Python. For oriented tests at chip-
level, the RISC-V compiler is invoked for test generation
with RV8 providing the golden reference construction, prior
to invoking VCS for simulation and coverage collection. A
report is created or updated with the resulting status for each
test. Once a batch of tests is finished, a new batch is prepared
and executed using a different seed. The required number of
iterations is specified by the user, according to the goal in
terms of coverage.

V. RESULTS

The proposed verification structure is fully functional and
can be replicated to equivalent designs. More than 100 tests
were implemented in total, some of them with multiple seeds,
for at least 5 different DUTs with independent functional and
structural coverage metrics.

An example of the regression console is given in Fig. 6.
Several reports are generated by the regression, including
information such as: test status with its respective seed,
performance parameters such as execution time or Clock Per
Cycle (CPI), and comparisons between the predicted and the
RTL register bank for each individual test.

Figure 7 shows an example of coverage results, extracted
from the Synopsys DVE coverage tool.

VI. CONCLUSIONS

A compact, affordable functional verification flow has been
generated and used for the verification of a small RISC-V
32I based micro-controller, as a base case. The flow follows a
functional verification strategy the includes the development of
a test methodology and verification architecture, and is capable
of carrying out hierarchical verification, reporting coverage
metrics and performing intensive, randomized regressions.

Figure 6. Screenshot of the regression console. Several reports are generated,
and the execution is scheduled via Linux’s Cron.

Figure 7. Accumulative coverage results obtained with the custom verification
environment. The graph to the right shows the functional coverage of the
RISC-V instruction formats [7]. The graph to the left depicts the average
structural coverage obtained for chip level verification.

The flow can be extended to other digital designs and can
incorporate alternative tools if required. Future works include
adding the option for formal verification tests to the flow,
and the possibility of generating random RISC-V coherent
programs.

REFERENCES

[1] Universal Verification Methodology (UVM) 1.2 User’s Guide, Accellera,
2015.

[2] Doulos. (2019) Uvm knowhow. [Online]. Available: https://www.
doulos.com/knowhow/sysverilog/uvm/

[3] R. Yang, L. Wu, J. Guo, and B. Liu, “The research and implement of
an advanced function coverage based verification environment,” in 2007
7th International Conference on ASIC, Oct 2007, pp. 1253–1256.

[4] V. B and B. Bala Tripura Sundari, “Uvm based testbench architecture
for coverage driven functional verification of spi protocol,” in 2018
International Conference on Advances in Computing, Communications
and Informatics (ICACCI), Sep. 2018, pp. 307–310.

[5] T. M. Pavithran and R. Bhakthavatchalu, “Uvm based testbench architec-
ture for logic sub-system verification,” in 2017 International Conference
on Technological Advancements in Power and Energy (TAP Energy),
Dec 2017, pp. 1–5.

[6] R. Garcı́a, A. Chacón, R. Castro, A. Arnaud, M. Miguez, J. Gak, R.
Molina, G. Madrigal, M. Oviedo, E. Solera, D. Salazar, D. Sánchez,
M. Fonseca, J. Arrieta, and R. Rimolo, “Siwa: a RISC-V platform in a
0.18µm HV CMOS process for implantable medical devices,” submitted.

[7] A. Waterman and K. Asanovic, The RISC-V Instruction Set Manual
Volume I: User-Level ISA, SiFive Inc., CS Division, EECS Department,
University of California, Berkeley, 5 2017, an optional note.

[8] “Ieee standard for the functional verification language e,” IEEE Std
1647-2016 (Revision of IEEE Std 1647-2011), pp. 1–558, Jan 2017.

[9] B. Wile, J. Goss, and W. Roesner, Comprehensive Functional Verifica-
tion: The Complete Industry Cycle (Systems on Silicon). San Francisco,
CA, USA: Morgan Kaufmann Publishers Inc., 2005.

[10] Risc-v simulator for x86-64. [Online]. Available: https://rv8.io/
[11] Risc-v gnu toolchain. [Online]. Available: https://github.com/sifive/

riscv-gnu-toolchain
[12] Risc-v elf to hex converter. [Online]. Available: https://github.com/

sifive/elf2hex

Authorized licensed use limited to: ANII. Downloaded on October 19,2021 at 19:30:40 UTC from IEEE Xplore. Restrictions apply.

